""" Module to solve any Sudoku Board Credits for Solver : http://norvig.com/sudoku.html """ def cross(array1, array2): """Cross product of elements in A and elements in B.""" return [a+b for a in array1 for b in array2] digits = '123456789' rows = 'ABCDEFGHI' cols = digits squares = cross(rows, cols) unitlist = ([cross(rows, c) for c in cols] + [cross(r, cols) for r in rows] + [cross(rs, cs) for rs in ('ABC', 'DEF', 'GHI') for cs in ('123','456','789')]) units = dict((s, [u for u in unitlist if s in u]) for s in squares) peers = dict((s, set(sum(units[s], []))-set([s])) for s in squares) def parse_grid(grid): """Convert grid to a dict of possible values, {square: digits}, or return False if a contradiction is detected.""" # To start, every square can be any digit; then assign values from the grid. values = dict((s, digits) for s in squares) for s, d in grid_values(grid).items(): if d in digits and not assign(values, s, d): return False # (Fail if we can't assign d to square s.) return values def grid_values(grid): """Convert grid into a dict of {square: char} with '0' or '.' for empties.""" chars = [c for c in grid if c in digits or c in '0.'] assert len(chars) == 81 return dict(zip(squares, chars)) def display(values): """Display these values as a 2-D grid.""" width = 1+max(len(values[s]) for s in squares) line = '+'.join(['-'*(width*3)]*3) for r in rows: print(''.join(values[r+c].center(width)+('|' if c in '36' else '') for c in cols)) if r in 'CF': print(line) print('') def display_grid(grid): """Display these values as a 2-D grid.""" line = '+'.join(['- '*3]*3) for i in range(9): row = '' for j in range(9): row = row + grid[i*9+j] + ' ' if j == 2 or j == 5: row = row + '|' print(row) if i == 2 or i == 5: print(line) print('') def assign(values, s, d): """Eliminate all the other values (except d) from values[s] and propagate. Return values, except return False if a contradiction is detected.""" other_values = values[s].replace(str(d), '') if all(eliminate(values, s, d2) for d2 in other_values): return values else: return False def eliminate(values, s, d): """Eliminate d from values[s]; propagate when values or places <= 2. Return values, except return False if a contradiction is detected.""" if d not in values[s]: return values # Already eliminated values[s] = values[s].replace(d, '') # (1) If a square s is reduced to one value d2, then eliminate d2 from the peers. if len(values[s]) == 0: return False # Contradiction: removed last value elif len(values[s]) == 1: d2 = values[s] if not all(eliminate(values, s2, d2) for s2 in peers[s]): return False # (2) If a unit u is reduced to only one place for a value d, then put it there. for u in units[s]: dplaces = [s for s in u if d in values[s]] if len(dplaces) == 0: return False # Contradiction: no place for this value elif len(dplaces) == 1: # d can only be in one place in unit; assign it there if not assign(values, dplaces[0], d): return False return values #def solve(grid): return search(parse_grid(grid)) def solve(values): return search(values) def search(values): """Using depth-first search and propagation, try all possible values.""" if values is False: return False # Failed earlier if all(len(values[s]) == 1 for s in squares): return values # Solved! # Chose the unfilled square s with the fewest possibilities n, s = min((len(values[s]), s) for s in squares if len(values[s]) > 1) return some(search(assign(values.copy(), s, d)) for d in values[s]) def some(seq): """Return some element of seq that is true.""" for e in seq: if e: return e return False