Finish hole digging

master
En Yi 2018-07-12 10:49:09 +08:00
parent 6137158ea8
commit 1e2c2dcc25
2 changed files with 160 additions and 129 deletions

View File

@ -7,135 +7,32 @@ Credits for Generator: http://zhangroup.aporc.org/images/files/Paper_3485.pdf
import random import random
import re import re
#from . import Sudoku_Solver as solver
import Sudoku_Solver as solver
filledcell = re.compile('(?!0)') filledcell = re.compile('(?!0)')
def cross(array1, array2): def check_for_nonzeros(seq):
"""Cross product of elements in A and elements in B.""" return len([m.start() for m in filledcell.finditer(seq)])
return [a+b for a in array1 for b in array2]
digits = '123456789' def generate_completed_grid(n):
rows = 'ABCDEFGHI'
cols = digits
squares = cross(rows, cols)
unitlist = ([cross(rows, c) for c in cols] +
[cross(r, cols) for r in rows] +
[cross(rs, cs) for rs in ('ABC', 'DEF', 'GHI') for cs in ('123','456','789')])
units = dict((s, [u for u in unitlist if s in u])
for s in squares)
peers = dict((s, set(sum(units[s], []))-set([s]))
for s in squares)
def parse_grid(grid):
"""Convert grid to a dict of possible values, {square: digits}, or
return False if a contradiction is detected."""
# To start, every square can be any digit; then assign values from the grid.
values = dict((s, digits) for s in squares)
for s, d in grid_values(grid).items():
if d in digits and not assign(values, s, d):
return False # (Fail if we can't assign d to square s.)
return values
def grid_values(grid):
"""Convert grid into a dict of {square: char} with '0' or '.' for empties."""
chars = [c for c in grid if c in digits or c in '0.']
assert len(chars) == 81
return dict(zip(squares, chars))
def display(values):
"""Display these values as a 2-D grid."""
width = 1+max(len(values[s]) for s in squares)
line = '+'.join(['-'*(width*3)]*3)
for r in rows:
print(''.join(values[r+c].center(width)+('|' if c in '36' else '')
for c in cols))
if r in 'CF':
print(line)
print('')
def assign(values, s, d):
"""Eliminate all the other values (except d) from values[s] and propagate.
Return values, except return False if a contradiction is detected."""
other_values = values[s].replace(str(d), '')
if all(eliminate(values, s, d2) for d2 in other_values):
return values
else:
return False
def eliminate(values, s, d):
"""Eliminate d from values[s]; propagate when values or places <= 2.
Return values, except return False if a contradiction is detected."""
if d not in values[s]:
return values # Already eliminated
values[s] = values[s].replace(d, '')
# (1) If a square s is reduced to one value d2, then eliminate d2 from the peers.
if len(values[s]) == 0:
return False # Contradiction: removed last value
elif len(values[s]) == 1:
d2 = values[s]
if not all(eliminate(values, s2, d2) for s2 in peers[s]):
return False
# (2) If a unit u is reduced to only one place for a value d, then put it there.
for u in units[s]:
dplaces = [s for s in u if d in values[s]]
if len(dplaces) == 0:
return False # Contradiction: no place for this value
elif len(dplaces) == 1:
# d can only be in one place in unit; assign it there
if not assign(values, dplaces[0], d):
return False
return values
#def solve(grid): return search(parse_grid(grid))
def solve(values): return search(values)
def search(values):
"""Using depth-first search and propagation, try all possible values."""
if values is False:
return False # Failed earlier
if all(len(values[s]) == 1 for s in squares):
return values # Solved!
# Chose the unfilled square s with the fewest possibilities
n, s = min((len(values[s]), s) for s in squares if len(values[s]) > 1)
return some(search(assign(values.copy(), s, d))
for d in values[s])
def some(seq):
"""Return some element of seq that is true."""
for e in seq:
if e:
return e
return False
def las_vegas(n):
# Generate a board by randomly picking n cells and # Generate a board by randomly picking n cells and
# fill them a random digit from 1-9 # fill them a random digit from 1-9
values = parse_grid('0' * 81) values = solver.parse_grid('0' * 81)
valid_assignments = 0 valid_assignments = 0
while valid_assignments < n: while valid_assignments < n:
# display(values) # display(values)
cell_to_assign = squares[random.randint(0, 80)] cell_to_assign = solver.squares[random.randint(0, 80)]
valid_values = values[cell_to_assign] valid_values = values[cell_to_assign]
if len(valid_values): if len(valid_values):
value_to_assign = valid_values[random.randint(0, len(valid_values) - 1)] value_to_assign = valid_values[random.randint(0, len(valid_values) - 1)]
assign(values, cell_to_assign, value_to_assign) solver.assign(values, cell_to_assign, value_to_assign)
valid_assignments += 1 valid_assignments += 1
return values
complete_values = solver.solve(values)
def generate_completed_grid():
complete_values = solve(las_vegas(11))
grid = '' grid = ''
for s in squares: for s in solver.squares:
grid += complete_values[s] grid += complete_values[s]
return grid return grid
@ -146,7 +43,7 @@ def generate_dig_sequence(difficulty):
if difficulty <= 1: if difficulty <= 1:
random_number = list(range(81)) random_number = list(range(81))
while len(random_number) > 0: while len(random_number) > 0:
print(len(random_number)) #print(len(random_number))
yield random_number.pop(random.randint(0, len(random_number)-1)) yield random_number.pop(random.randint(0, len(random_number)-1))
elif difficulty == 2: elif difficulty == 2:
current = 0 current = 0
@ -172,9 +69,7 @@ def generate_dig_sequence(difficulty):
yield current yield current
current += 1 current += 1
def generate_sudoku_puzzle(difficulty): def specify_grid_properties(difficulty):
grid = generate_completed_grid()
if difficulty == 0: if difficulty == 0:
n_givens = random.randint(50, 60) n_givens = random.randint(50, 60)
lower_bound = 5 lower_bound = 5
@ -191,6 +86,12 @@ def generate_sudoku_puzzle(difficulty):
n_givens = random.randint(22, 27) n_givens = random.randint(22, 27)
lower_bound = 0 lower_bound = 0
return n_givens, lower_bound
def generate_sudoku_puzzle(difficulty):
grid = generate_completed_grid(11)
n_givens, lower_bound = specify_grid_properties()
dig_sequence = generate_dig_sequence(difficulty) dig_sequence = generate_dig_sequence(difficulty)
holes = 0 holes = 0
@ -200,16 +101,26 @@ def generate_sudoku_puzzle(difficulty):
except StopIteration: except StopIteration:
print("Reach end of Sequence") print("Reach end of Sequence")
break break
# TODO: Check if givens at current row and column is at lower bound row = i % 9
if check_for_nonzeros(grid[row:row+9]) > lower_bound:
# TODO: Dig the current hole and check for uniqueness current_number = grid[i]
other_numbers = solver.digits.replace(current_number, '')
unique = True
for digit in other_numbers:
grid_check = grid[:i] + digit + grid[i+1:]
if solver.solve(solver.parse_grid(grid_check)):
unique = False
break
if unique:
grid = grid[:i] + '0' + grid[i+1:]
holes += 1
# TODO: Propagate and Output # TODO: Propagate and Output
return grid return grid
if __name__ == "__main__": if __name__ == "__main__":
#print(generate_completed_grid()) puzzle = generate_sudoku_puzzle(4)
func = generate_dig_sequence(3) print(check_for_nonzeros(puzzle))
#print(next(func))
[print(a) for a in next(func)] solver.display_grid(puzzle)
solver.display(solver.solve(solver.parse_grid(puzzle)))

View File

@ -0,0 +1,120 @@
def cross(array1, array2):
"""Cross product of elements in A and elements in B."""
return [a+b for a in array1 for b in array2]
digits = '123456789'
rows = 'ABCDEFGHI'
cols = digits
squares = cross(rows, cols)
unitlist = ([cross(rows, c) for c in cols] +
[cross(r, cols) for r in rows] +
[cross(rs, cs) for rs in ('ABC', 'DEF', 'GHI') for cs in ('123','456','789')])
units = dict((s, [u for u in unitlist if s in u])
for s in squares)
peers = dict((s, set(sum(units[s], []))-set([s]))
for s in squares)
def parse_grid(grid):
"""Convert grid to a dict of possible values, {square: digits}, or
return False if a contradiction is detected."""
# To start, every square can be any digit; then assign values from the grid.
values = dict((s, digits) for s in squares)
for s, d in grid_values(grid).items():
if d in digits and not assign(values, s, d):
return False # (Fail if we can't assign d to square s.)
return values
def grid_values(grid):
"""Convert grid into a dict of {square: char} with '0' or '.' for empties."""
chars = [c for c in grid if c in digits or c in '0.']
assert len(chars) == 81
return dict(zip(squares, chars))
def display(values):
"""Display these values as a 2-D grid."""
width = 1+max(len(values[s]) for s in squares)
line = '+'.join(['-'*(width*3)]*3)
for r in rows:
print(''.join(values[r+c].center(width)+('|' if c in '36' else '')
for c in cols))
if r in 'CF':
print(line)
print('')
def display_grid(grid):
"""Display these values as a 2-D grid."""
line = '+'.join(['- '*3]*3)
for i in range(9):
row = ''
for j in range(9):
row = row + grid[i*9+j] + ' '
if j == 2 or j == 5:
row = row + '|'
print(row)
if i == 2 or i == 5:
print(line)
print('')
def assign(values, s, d):
"""Eliminate all the other values (except d) from values[s] and propagate.
Return values, except return False if a contradiction is detected."""
other_values = values[s].replace(str(d), '')
if all(eliminate(values, s, d2) for d2 in other_values):
return values
else:
return False
def eliminate(values, s, d):
"""Eliminate d from values[s]; propagate when values or places <= 2.
Return values, except return False if a contradiction is detected."""
if d not in values[s]:
return values # Already eliminated
values[s] = values[s].replace(d, '')
# (1) If a square s is reduced to one value d2, then eliminate d2 from the peers.
if len(values[s]) == 0:
return False # Contradiction: removed last value
elif len(values[s]) == 1:
d2 = values[s]
if not all(eliminate(values, s2, d2) for s2 in peers[s]):
return False
# (2) If a unit u is reduced to only one place for a value d, then put it there.
for u in units[s]:
dplaces = [s for s in u if d in values[s]]
if len(dplaces) == 0:
return False # Contradiction: no place for this value
elif len(dplaces) == 1:
# d can only be in one place in unit; assign it there
if not assign(values, dplaces[0], d):
return False
return values
#def solve(grid): return search(parse_grid(grid))
def solve(values): return search(values)
def search(values):
"""Using depth-first search and propagation, try all possible values."""
if values is False:
return False # Failed earlier
if all(len(values[s]) == 1 for s in squares):
return values # Solved!
# Chose the unfilled square s with the fewest possibilities
n, s = min((len(values[s]), s) for s in squares if len(values[s]) > 1)
return some(search(assign(values.copy(), s, d))
for d in values[s])
def some(seq):
"""Return some element of seq that is true."""
for e in seq:
if e:
return e
return False